TheRiver | blog

You have reached the world's edge, none but devils play past here

0%

stl-vector源码剖析

参考

STL源码剖析.pdf

STL源码剖析(批注版).pdf

cplusplus-vector

正文

vector.png

思维导图

TODO

源码

gcc-9.2.0 stl_vector.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
  
// .......................................................
template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc>
{

// .......................................................
typedef _Vector_base<_Tp, _Alloc> _Base;
typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Alloc_traits;

public:
typedef _Tp value_type;
typedef typename _Base::pointer pointer;
typedef typename _Alloc_traits::const_pointer const_pointer;
typedef typename _Alloc_traits::reference reference;
typedef typename _Alloc_traits::const_reference const_reference;
typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Alloc allocator_type;

private:
// C++11
// .......................................................

protected:
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_impl;
using _Base::_M_get_Tp_allocator;

public:
// [23.2.4.1] construct/copy/destroy
// (assign() and get_allocator() are also listed in this section)
//无参构造
#if __cplusplus >= 201103L
vector() = default;
#else
vector() { }
#endif

/**
* @brief Creates a %vector with no elements.
* @param __a An allocator object.
*/
explicit
vector(const allocator_type& __a) _GLIBCXX_NOEXCEPT
: _Base(__a) { }

//有参构造,vector(n, m) n个元素,每个元素的值是m
#if __cplusplus >= 201103L
// C++11
// .......................................................
#else
/**
* @brief Creates a %vector with copies of an exemplar element.
* @param __n The number of elements to initially create.
* @param __value An element to copy.
* @param __a An allocator.
*/
explicit
vector(size_type __n, const value_type& __value = value_type(),
const allocator_type& __a = allocator_type())
: _Base(_S_check_init_len(__n, __a), __a)
{ _M_fill_initialize(__n, __value); }
#endif

//拷贝构造
/**
* @brief %Vector copy constructor.
* @param __x A %vector of identical element and allocator types.
*
* All the elements of @a __x are copied, but any unused capacity in
* @a __x will not be copied
* (i.e. capacity() == size() in the new %vector).
*
* The newly-created %vector uses a copy of the allocator object used
* by @a __x (unless the allocator traits dictate a different object).
*/
vector(const vector& __x)
: _Base(__x.size(),
_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
{
this->_M_impl._M_finish =
std::__uninitialized_copy_a(__x.begin(), __x.end(),
this->_M_impl._M_start,
_M_get_Tp_allocator());
}

#if __cplusplus >= 201103L
// C++11
// .......................................................
#endif

//接收范围参数的构造函数
/**
* @brief Builds a %vector from a range.
* @param __first An input iterator.
* @param __last An input iterator.
* @param __a An allocator.
*
* Create a %vector consisting of copies of the elements from
* [first,last).
*
* If the iterators are forward, bidirectional, or
* random-access, then this will call the elements' copy
* constructor N times (where N is distance(first,last)) and do
* no memory reallocation. But if only input iterators are
* used, then this will do at most 2N calls to the copy
* constructor, and logN memory reallocations.
*/
#if __cplusplus >= 201103L
// C++11
// .......................................................
#else
template<typename _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
#endif

/**
* The dtor only erases the elements, and note that if the
* elements themselves are pointers, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibility.
*/
//_Destroy仅擦除元素,并请注意,如果元素本身是指针,则不会以任何方式访问指向的内存
//管理指针是用户的责任
~vector() _GLIBCXX_NOEXCEPT
{
std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
_M_get_Tp_allocator());
_GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC;
}

//运算符重载,=
/**
* @brief %Vector assignment operator.
* @param __x A %vector of identical element and allocator types.
*
* All the elements of @a __x are copied, but any unused capacity in
* @a __x will not be copied.
*
* Whether the allocator is copied depends on the allocator traits.
*/
vector&
operator=(const vector& __x);

#if __cplusplus >= 201103L
// C++11
// .......................................................
#endif

//assign函数,具体见下文
//给vector分配__n个元素,每个元素的值为__val
void
assign(size_type __n, const value_type& __val)
{ _M_fill_assign(__n, __val); }

//把模板类型的__first到__last范围的值复制给vector
#if __cplusplus >= 201103L
// C++11
// .......................................................
#else
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
#endif

#if __cplusplus >= 201103L
// C++11
// .......................................................
#endif

/// Get a copy of the memory allocation object.
using _Base::get_allocator;

// iterators
/**
* Returns a read/write iterator that points to the first
* element in the %vector. Iteration is done in ordinary
* element order.
*/
iterator
begin() _GLIBCXX_NOEXCEPT
{ return iterator(this->_M_impl._M_start); }

/**
* Returns a read-only (constant) iterator that points to the
* first element in the %vector. Iteration is done in ordinary
* element order.
*/
const_iterator
begin() const _GLIBCXX_NOEXCEPT
{ return const_iterator(this->_M_impl._M_start); }

/**
* Returns a read/write iterator that points one past the last
* element in the %vector. Iteration is done in ordinary
* element order.
*/
iterator
end() _GLIBCXX_NOEXCEPT
{ return iterator(this->_M_impl._M_finish); }

/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %vector. Iteration is done in
* ordinary element order.
*/
const_iterator
end() const _GLIBCXX_NOEXCEPT
{ return const_iterator(this->_M_impl._M_finish); }

/**
* Returns a read/write reverse iterator that points to the
* last element in the %vector. Iteration is done in reverse
* element order.
*/
reverse_iterator
rbegin() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(end()); }

/**
* Returns a read-only (constant) reverse iterator that points
* to the last element in the %vector. Iteration is done in
* reverse element order.
*/
const_reverse_iterator
rbegin() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(end()); }

/**
* Returns a read/write reverse iterator that points to one
* before the first element in the %vector. Iteration is done
* in reverse element order.
*/
reverse_iterator
rend() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(begin()); }

/**
* Returns a read-only (constant) reverse iterator that points
* to one before the first element in the %vector. Iteration
* is done in reverse element order.
*/
const_reverse_iterator
rend() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(begin()); }

#if __cplusplus >= 201103L
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %vector. Iteration is done in ordinary
* element order.
*/
const_iterator
cbegin() const noexcept
{ return const_iterator(this->_M_impl._M_start); }

/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %vector. Iteration is done in
* ordinary element order.
*/
const_iterator
cend() const noexcept
{ return const_iterator(this->_M_impl._M_finish); }

/**
* Returns a read-only (constant) reverse iterator that points
* to the last element in the %vector. Iteration is done in
* reverse element order.
*/
const_reverse_iterator
crbegin() const noexcept
{ return const_reverse_iterator(end()); }

/**
* Returns a read-only (constant) reverse iterator that points
* to one before the first element in the %vector. Iteration
* is done in reverse element order.
*/
const_reverse_iterator
crend() const noexcept
{ return const_reverse_iterator(begin()); }
#endif

// [23.2.4.2] capacity
/** Returns the number of elements in the %vector. */
size_type
size() const _GLIBCXX_NOEXCEPT
{ return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }

/** Returns the size() of the largest possible %vector. */
size_type
max_size() const _GLIBCXX_NOEXCEPT
{ return _S_max_size(_M_get_Tp_allocator()); }

#if __cplusplus >= 201103L
/**
* @brief Resizes the %vector to the specified number of elements.
* @param __new_size Number of elements the %vector should contain.
*
* This function will %resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* default constructed elements are appended.
*/
void
resize(size_type __new_size)
{
if (__new_size > size())
_M_default_append(__new_size - size());
else if (__new_size < size())
_M_erase_at_end(this->_M_impl._M_start + __new_size);
}

/**
* @brief Resizes the %vector to the specified number of elements.
* @param __new_size Number of elements the %vector should contain.
* @param __x Data with which new elements should be populated.
*
* This function will %resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* the %vector is extended and new elements are populated with
* given data.
*/
void
resize(size_type __new_size, const value_type& __x)
{
if (__new_size > size())
_M_fill_insert(end(), __new_size - size(), __x);
else if (__new_size < size())
_M_erase_at_end(this->_M_impl._M_start + __new_size);
}
#else
/**
* @brief Resizes the %vector to the specified number of elements.
* @param __new_size Number of elements the %vector should contain.
* @param __x Data with which new elements should be populated.
*
* This function will %resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* the %vector is extended and new elements are populated with
* given data.
*/
void
resize(size_type __new_size, value_type __x = value_type())
{
if (__new_size > size())
_M_fill_insert(end(), __new_size - size(), __x);
else if (__new_size < size())
_M_erase_at_end(this->_M_impl._M_start + __new_size);
}
#endif

#if __cplusplus >= 201103L
/** A non-binding request to reduce capacity() to size(). */
void
shrink_to_fit()
{ _M_shrink_to_fit(); }
#endif

/**
* Returns the total number of elements that the %vector can
* hold before needing to allocate more memory.
*/
size_type
capacity() const _GLIBCXX_NOEXCEPT
{ return size_type(this->_M_impl._M_end_of_storage
- this->_M_impl._M_start); }

/**
* Returns true if the %vector is empty. (Thus begin() would
* equal end().)
*/
_GLIBCXX_NODISCARD bool
empty() const _GLIBCXX_NOEXCEPT
{ return begin() == end(); }

/**
* @brief Attempt to preallocate enough memory for specified number of
* elements.
* @param __n Number of elements required.
* @throw std::length_error If @a n exceeds @c max_size().
*
* This function attempts to reserve enough memory for the
* %vector to hold the specified number of elements. If the
* number requested is more than max_size(), length_error is
* thrown.
*
* The advantage of this function is that if optimal code is a
* necessity and the user can determine the number of elements
* that will be required, the user can reserve the memory in
* %advance, and thus prevent a possible reallocation of memory
* and copying of %vector data.
*/
void
reserve(size_type __n);

// element access
/**
* @brief Subscript access to the data contained in the %vector.
* @param __n The index of the element for which data should be
* accessed.
* @return Read/write reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and
* out_of_range lookups are not defined. (For checked lookups
* see at().)
*/
reference
operator[](size_type __n) _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_subscript(__n);
return *(this->_M_impl._M_start + __n);
}

/**
* @brief Subscript access to the data contained in the %vector.
* @param __n The index of the element for which data should be
* accessed.
* @return Read-only (constant) reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and
* out_of_range lookups are not defined. (For checked lookups
* see at().)
*/
const_reference
operator[](size_type __n) const _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_subscript(__n);
return *(this->_M_impl._M_start + __n);
}

protected:
/// Safety check used only from at().
void
_M_range_check(size_type __n) const
{
if (__n >= this->size())
__throw_out_of_range_fmt(__N("vector::_M_range_check: __n "
"(which is %zu) >= this->size() "
"(which is %zu)"),
__n, this->size());
}

public:
/**
* @brief Provides access to the data contained in the %vector.
* @param __n The index of the element for which data should be
* accessed.
* @return Read/write reference to data.
* @throw std::out_of_range If @a __n is an invalid index.
*
* This function provides for safer data access. The parameter
* is first checked that it is in the range of the vector. The
* function throws out_of_range if the check fails.
*/
reference
at(size_type __n)
{
_M_range_check(__n);
return (*this)[__n];
}

/**
* @brief Provides access to the data contained in the %vector.
* @param __n The index of the element for which data should be
* accessed.
* @return Read-only (constant) reference to data.
* @throw std::out_of_range If @a __n is an invalid index.
*
* This function provides for safer data access. The parameter
* is first checked that it is in the range of the vector. The
* function throws out_of_range if the check fails.
*/
const_reference
at(size_type __n) const
{
_M_range_check(__n);
return (*this)[__n];
}

/**
* Returns a read/write reference to the data at the first
* element of the %vector.
*/
reference
front() _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
return *begin();
}

/**
* Returns a read-only (constant) reference to the data at the first
* element of the %vector.
*/
const_reference
front() const _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
return *begin();
}

/**
* Returns a read/write reference to the data at the last
* element of the %vector.
*/
reference
back() _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
return *(end() - 1);
}

/**
* Returns a read-only (constant) reference to the data at the
* last element of the %vector.
*/
const_reference
back() const _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
return *(end() - 1);
}

// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 464. Suggestion for new member functions in standard containers.
// data access
/**
* Returns a pointer such that [data(), data() + size()) is a valid
* range. For a non-empty %vector, data() == &front().
*/
_Tp*
data() _GLIBCXX_NOEXCEPT
{ return _M_data_ptr(this->_M_impl._M_start); }

const _Tp*
data() const _GLIBCXX_NOEXCEPT
{ return _M_data_ptr(this->_M_impl._M_start); }

// [23.2.4.3] modifiers
/**
* @brief Add data to the end of the %vector.
* @param __x Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the end of the %vector and assigns the given data
* to it. Due to the nature of a %vector this operation can be
* done in constant time if the %vector has preallocated space
* available.
*/
void
push_back(const value_type& __x)
{
if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
{
_GLIBCXX_ASAN_ANNOTATE_GROW(1);
_Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
__x);
++this->_M_impl._M_finish;
_GLIBCXX_ASAN_ANNOTATE_GREW(1);
}
else
_M_realloc_insert(end(), __x);
}

#if __cplusplus >= 201103L
void
push_back(value_type&& __x)
{ emplace_back(std::move(__x)); }

template<typename... _Args>
#if __cplusplus > 201402L
reference
#else
void
#endif
emplace_back(_Args&&... __args);
#endif

/**
* @brief Removes last element.
*
* This is a typical stack operation. It shrinks the %vector by one.
*
* Note that no data is returned, and if the last element's
* data is needed, it should be retrieved before pop_back() is
* called.
*/
void
pop_back() _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
--this->_M_impl._M_finish;
_Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
_GLIBCXX_ASAN_ANNOTATE_SHRINK(1);
}

#if __cplusplus >= 201103L
/**
* @brief Inserts an object in %vector before specified iterator.
* @param __position A const_iterator into the %vector.
* @param __args Arguments.
* @return An iterator that points to the inserted data.
*
* This function will insert an object of type T constructed
* with T(std::forward<Args>(args)...) before the specified location.
* Note that this kind of operation could be expensive for a %vector
* and if it is frequently used the user should consider using
* std::list.
*/
template<typename... _Args>
iterator
emplace(const_iterator __position, _Args&&... __args)
{ return _M_emplace_aux(__position, std::forward<_Args>(__args)...); }

/**
* @brief Inserts given value into %vector before specified iterator.
* @param __position A const_iterator into the %vector.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before
* the specified location. Note that this kind of operation
* could be expensive for a %vector and if it is frequently
* used the user should consider using std::list.
*/
iterator
insert(const_iterator __position, const value_type& __x);
#else
/**
* @brief Inserts given value into %vector before specified iterator.
* @param __position An iterator into the %vector.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before
* the specified location. Note that this kind of operation
* could be expensive for a %vector and if it is frequently
* used the user should consider using std::list.
*/
iterator
insert(iterator __position, const value_type& __x);
#endif

#if __cplusplus >= 201103L
/**
* @brief Inserts given rvalue into %vector before specified iterator.
* @param __position A const_iterator into the %vector.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given rvalue before
* the specified location. Note that this kind of operation
* could be expensive for a %vector and if it is frequently
* used the user should consider using std::list.
*/
iterator
insert(const_iterator __position, value_type&& __x)
{ return _M_insert_rval(__position, std::move(__x)); }

/**
* @brief Inserts an initializer_list into the %vector.
* @param __position An iterator into the %vector.
* @param __l An initializer_list.
*
* This function will insert copies of the data in the
* initializer_list @a l into the %vector before the location
* specified by @a position.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
iterator
insert(const_iterator __position, initializer_list<value_type> __l)
{
auto __offset = __position - cbegin();
_M_range_insert(begin() + __offset, __l.begin(), __l.end(),
std::random_access_iterator_tag());
return begin() + __offset;
}
#endif

#if __cplusplus >= 201103L
/**
* @brief Inserts a number of copies of given data into the %vector.
* @param __position A const_iterator into the %vector.
* @param __n Number of elements to be inserted.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a specified number of copies of
* the given data before the location specified by @a position.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
iterator
insert(const_iterator __position, size_type __n, const value_type& __x)
{
difference_type __offset = __position - cbegin();
_M_fill_insert(begin() + __offset, __n, __x);
return begin() + __offset;
}
#else
/**
* @brief Inserts a number of copies of given data into the %vector.
* @param __position An iterator into the %vector.
* @param __n Number of elements to be inserted.
* @param __x Data to be inserted.
*
* This function will insert a specified number of copies of
* the given data before the location specified by @a position.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
void
insert(iterator __position, size_type __n, const value_type& __x)
{ _M_fill_insert(__position, __n, __x); }
#endif

#if __cplusplus >= 201103L
/**
* @brief Inserts a range into the %vector.
* @param __position A const_iterator into the %vector.
* @param __first An input iterator.
* @param __last An input iterator.
* @return An iterator that points to the inserted data.
*
* This function will insert copies of the data in the range
* [__first,__last) into the %vector before the location specified
* by @a pos.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
template<typename _InputIterator,
typename = std::_RequireInputIter<_InputIterator>>
iterator
insert(const_iterator __position, _InputIterator __first,
_InputIterator __last)
{
difference_type __offset = __position - cbegin();
_M_insert_dispatch(begin() + __offset,
__first, __last, __false_type());
return begin() + __offset;
}
#else
/**
* @brief Inserts a range into the %vector.
* @param __position An iterator into the %vector.
* @param __first An input iterator.
* @param __last An input iterator.
*
* This function will insert copies of the data in the range
* [__first,__last) into the %vector before the location specified
* by @a pos.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
template<typename _InputIterator>
void
insert(iterator __position, _InputIterator __first,
_InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_insert_dispatch(__position, __first, __last, _Integral());
}
#endif

/**
* @brief Remove element at given position.
* @param __position Iterator pointing to element to be erased.
* @return An iterator pointing to the next element (or end()).
*
* This function will erase the element at the given position and thus
* shorten the %vector by one.
*
* Note This operation could be expensive and if it is
* frequently used the user should consider using std::list.
* The user is also cautioned that this function only erases
* the element, and that if the element is itself a pointer,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibility.
*/
iterator
#if __cplusplus >= 201103L
erase(const_iterator __position)
{ return _M_erase(begin() + (__position - cbegin())); }
#else
erase(iterator __position)
{ return _M_erase(__position); }
#endif

/**
* @brief Remove a range of elements.
* @param __first Iterator pointing to the first element to be erased.
* @param __last Iterator pointing to one past the last element to be
* erased.
* @return An iterator pointing to the element pointed to by @a __last
* prior to erasing (or end()).
*
* This function will erase the elements in the range
* [__first,__last) and shorten the %vector accordingly.
*
* Note This operation could be expensive and if it is
* frequently used the user should consider using std::list.
* The user is also cautioned that this function only erases
* the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibility.
*/
iterator
#if __cplusplus >= 201103L
erase(const_iterator __first, const_iterator __last)
{
const auto __beg = begin();
const auto __cbeg = cbegin();
return _M_erase(__beg + (__first - __cbeg), __beg + (__last - __cbeg));
}
#else
erase(iterator __first, iterator __last)
{ return _M_erase(__first, __last); }
#endif

/**
* @brief Swaps data with another %vector.
* @param __x A %vector of the same element and allocator types.
*
* This exchanges the elements between two vectors in constant time.
* (Three pointers, so it should be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(v1,v2) will feed to this function.
*
* Whether the allocators are swapped depends on the allocator traits.
*/
void
swap(vector& __x) _GLIBCXX_NOEXCEPT
{
#if __cplusplus >= 201103L
__glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value
|| _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
#endif
this->_M_impl._M_swap_data(__x._M_impl);
_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
__x._M_get_Tp_allocator());
}

/**
* Erases all the elements. Note that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibility.
*/
void
clear() _GLIBCXX_NOEXCEPT
{ _M_erase_at_end(this->_M_impl._M_start); }

protected:
/**
* Memory expansion handler. Uses the member allocation function to
* obtain @a n bytes of memory, and then copies [first,last) into it.
*/
template<typename _ForwardIterator>
pointer
_M_allocate_and_copy(size_type __n,
_ForwardIterator __first, _ForwardIterator __last)
{
pointer __result = this->_M_allocate(__n);
__try
{
std::__uninitialized_copy_a(__first, __last, __result,
_M_get_Tp_allocator());
return __result;
}
__catch(...)
{
_M_deallocate(__result, __n);
__throw_exception_again;
}
}


// Internal constructor functions follow.

// Called by the range constructor to implement [23.1.1]/9

#if __cplusplus < 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 438. Ambiguity in the "do the right thing" clause
template<typename _Integer>
void
_M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
{
this->_M_impl._M_start = _M_allocate(_S_check_init_len(
static_cast<size_type>(__n), _M_get_Tp_allocator()));
this->_M_impl._M_end_of_storage =
this->_M_impl._M_start + static_cast<size_type>(__n);
_M_fill_initialize(static_cast<size_type>(__n), __value);
}

// Called by the range constructor to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{
_M_range_initialize(__first, __last,
std::__iterator_category(__first));
}
#endif

// Called by the second initialize_dispatch above
template<typename _InputIterator>
void
_M_range_initialize(_InputIterator __first, _InputIterator __last,
std::input_iterator_tag)
{
__try {
for (; __first != __last; ++__first)
#if __cplusplus >= 201103L
emplace_back(*__first);
#else
push_back(*__first);
#endif
} __catch(...) {
clear();
__throw_exception_again;
}
}

// Called by the second initialize_dispatch above
template<typename _ForwardIterator>
void
_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
std::forward_iterator_tag)
{
const size_type __n = std::distance(__first, __last);
this->_M_impl._M_start
= this->_M_allocate(_S_check_init_len(__n, _M_get_Tp_allocator()));
this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
this->_M_impl._M_finish =
std::__uninitialized_copy_a(__first, __last,
this->_M_impl._M_start,
_M_get_Tp_allocator());
}

// Called by the first initialize_dispatch above and by the
// vector(n,value,a) constructor.
void
_M_fill_initialize(size_type __n, const value_type& __value)
{
this->_M_impl._M_finish =
std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
_M_get_Tp_allocator());
}

#if __cplusplus >= 201103L
// Called by the vector(n) constructor.
void
_M_default_initialize(size_type __n)
{
this->_M_impl._M_finish =
std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
_M_get_Tp_allocator());
}
#endif

// Internal assign functions follow. The *_aux functions do the actual
// assignment work for the range versions.

// Called by the range assign to implement [23.1.1]/9

// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 438. Ambiguity in the "do the right thing" clause
template<typename _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign(__n, __val); }

// Called by the range assign to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }

// Called by the second assign_dispatch above
template<typename _InputIterator>
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
std::input_iterator_tag);

// Called by the second assign_dispatch above
template<typename _ForwardIterator>
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
std::forward_iterator_tag);

// Called by assign(n,t), and the range assign when it turns out
// to be the same thing.
void
_M_fill_assign(size_type __n, const value_type& __val);

// Internal insert functions follow.

// Called by the range insert to implement [23.1.1]/9

// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 438. Ambiguity in the "do the right thing" clause
template<typename _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
__true_type)
{ _M_fill_insert(__pos, __n, __val); }

// Called by the range insert to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_insert_dispatch(iterator __pos, _InputIterator __first,
_InputIterator __last, __false_type)
{
_M_range_insert(__pos, __first, __last,
std::__iterator_category(__first));
}

// Called by the second insert_dispatch above
template<typename _InputIterator>
void
_M_range_insert(iterator __pos, _InputIterator __first,
_InputIterator __last, std::input_iterator_tag);

// Called by the second insert_dispatch above
template<typename _ForwardIterator>
void
_M_range_insert(iterator __pos, _ForwardIterator __first,
_ForwardIterator __last, std::forward_iterator_tag);

// Called by insert(p,n,x), and the range insert when it turns out to be
// the same thing.
void
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x);

#if __cplusplus >= 201103L
// Called by resize(n).
void
_M_default_append(size_type __n);

bool
_M_shrink_to_fit();
#endif

#if __cplusplus < 201103L
// Called by insert(p,x)
void
_M_insert_aux(iterator __position, const value_type& __x);

void
_M_realloc_insert(iterator __position, const value_type& __x);
#else
// A value_type object constructed with _Alloc_traits::construct()
// and destroyed with _Alloc_traits::destroy().
struct _Temporary_value
{
template<typename... _Args>
explicit
_Temporary_value(vector* __vec, _Args&&... __args) : _M_this(__vec)
{
_Alloc_traits::construct(_M_this->_M_impl, _M_ptr(),
std::forward<_Args>(__args)...);
}

~_Temporary_value()
{ _Alloc_traits::destroy(_M_this->_M_impl, _M_ptr()); }

value_type&
_M_val() { return *_M_ptr(); }

private:
_Tp*
_M_ptr() { return reinterpret_cast<_Tp*>(&__buf); }

vector* _M_this;
typename aligned_storage<sizeof(_Tp), alignof(_Tp)>::type __buf;
};

// Called by insert(p,x) and other functions when insertion needs to
// reallocate or move existing elements. _Arg is either _Tp& or _Tp.
template<typename _Arg>
void
_M_insert_aux(iterator __position, _Arg&& __arg);

template<typename... _Args>
void
_M_realloc_insert(iterator __position, _Args&&... __args);

// Either move-construct at the end, or forward to _M_insert_aux.
iterator
_M_insert_rval(const_iterator __position, value_type&& __v);

// Try to emplace at the end, otherwise forward to _M_insert_aux.
template<typename... _Args>
iterator
_M_emplace_aux(const_iterator __position, _Args&&... __args);

// Emplacing an rvalue of the correct type can use _M_insert_rval.
iterator
_M_emplace_aux(const_iterator __position, value_type&& __v)
{ return _M_insert_rval(__position, std::move(__v)); }
#endif

// Called by _M_fill_insert, _M_insert_aux etc.
size_type
_M_check_len(size_type __n, const char* __s) const
{
if (max_size() - size() < __n)
__throw_length_error(__N(__s));

const size_type __len = size() + (std::max)(size(), __n);
return (__len < size() || __len > max_size()) ? max_size() : __len;
}

// Called by constructors to check initial size.
static size_type
_S_check_init_len(size_type __n, const allocator_type& __a)
{
if (__n > _S_max_size(_Tp_alloc_type(__a)))
__throw_length_error(
__N("cannot create std::vector larger than max_size()"));
return __n;
}

static size_type
_S_max_size(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
{
// std::distance(begin(), end()) cannot be greater than PTRDIFF_MAX,
// and realistically we can't store more than PTRDIFF_MAX/sizeof(T)
// (even if std::allocator_traits::max_size says we can).
const size_t __diffmax
= __gnu_cxx::__numeric_traits<ptrdiff_t>::__max / sizeof(_Tp);
const size_t __allocmax = _Alloc_traits::max_size(__a);
return (std::min)(__diffmax, __allocmax);
}

// Internal erase functions follow.

// Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
// _M_assign_aux.
void
_M_erase_at_end(pointer __pos) _GLIBCXX_NOEXCEPT
{
if (size_type __n = this->_M_impl._M_finish - __pos)
{
std::_Destroy(__pos, this->_M_impl._M_finish,
_M_get_Tp_allocator());
this->_M_impl._M_finish = __pos;
_GLIBCXX_ASAN_ANNOTATE_SHRINK(__n);
}
}

iterator
_M_erase(iterator __position);

iterator
_M_erase(iterator __first, iterator __last);

#if __cplusplus >= 201103L
private:
// Constant-time move assignment when source object's memory can be
// moved, either because the source's allocator will move too
// or because the allocators are equal.
void
_M_move_assign(vector&& __x, true_type) noexcept
{
vector __tmp(get_allocator());
this->_M_impl._M_swap_data(__x._M_impl);
__tmp._M_impl._M_swap_data(__x._M_impl);
std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
}

// Do move assignment when it might not be possible to move source
// object's memory, resulting in a linear-time operation.
void
_M_move_assign(vector&& __x, false_type)
{
if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
_M_move_assign(std::move(__x), true_type());
else
{
// The rvalue's allocator cannot be moved and is not equal,
// so we need to individually move each element.
this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
std::__make_move_if_noexcept_iterator(__x.end()));
__x.clear();
}
}
#endif

template<typename _Up>
_Up*
_M_data_ptr(_Up* __ptr) const _GLIBCXX_NOEXCEPT
{ return __ptr; }

#if __cplusplus >= 201103L
template<typename _Ptr>
typename std::pointer_traits<_Ptr>::element_type*
_M_data_ptr(_Ptr __ptr) const
{ return empty() ? nullptr : std::__to_address(__ptr); }
#else
template<typename _Up>
_Up*
_M_data_ptr(_Up* __ptr) _GLIBCXX_NOEXCEPT
{ return __ptr; }

template<typename _Ptr>
value_type*
_M_data_ptr(_Ptr __ptr)
{ return empty() ? (value_type*)0 : __ptr.operator->(); }

template<typename _Ptr>
const value_type*
_M_data_ptr(_Ptr __ptr) const
{ return empty() ? (const value_type*)0 : __ptr.operator->(); }
#endif
}


assign

input:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <iostream>
#include <vector>
using namespace std;

void func_print(std::vector<int> &ovec)
{
std::vector<int>::iterator it = ovec.begin();
for(it; it != ovec.end(); it++)
{
cout << " " << *it ;
}
cout << endl;
return ;
}

int main ()
{
std::vector<int> first;
std::vector<int> second;
std::vector<int> third;

first.assign (7,100); // 7 ints with a value of 100

std::vector<int>::iterator it;
it=first.begin()+1;

second.assign (it,first.end()-1); // the 5 central values of first

int myints[] = {1776,7,4};
third.assign (myints,myints+3); // assigning from array.

std::cout << "Size of first: " << int (first.size()) << '\n';
func_print(first);
std::cout << "Size of second: " << int (second.size()) << '\n';
func_print(second);
std::cout << "Size of third: " << int (third.size()) << '\n';
func_print(third);
return 0;
}


output:

Size of first: 7
 100 100 100 100 100 100 100
Size of second: 5
 100 100 100 100 100
Size of third: 3
 1776 7 4

Process returned 0 (0x0)   execution time : 0.015 s
Press any key to continue.

总结

assgin有2个实现:

void assign (InputIterator first, InputIterator last);

void assign (size_type n, const value_type& val);

带范围的assign的最后一个参数是不会被复制的,

如first = it, last = it + 5, 则一共复制5个值

it, it+1, it+2, it+3, it+4

end()函数是vector最后一个元素的后一个元素,一般值为0

cout打印iterator的地址: &*it


push_bask()

void push_back (const value_type& val);

Adds a new element at the end of the vector, after its current last element. The content of val is copied (or moved) to the new element.

This effectively increases the container size by one, which causes an automatic reallocation of the allocated storage space if -and only if- the new vector size surpasses the current vector capacity.

void
  push_back(const value_type& __x)
  {
if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
  {
    _GLIBCXX_ASAN_ANNOTATE_GROW(1);
    _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
                 __x);
    ++this->_M_impl._M_finish;
    _GLIBCXX_ASAN_ANNOTATE_GREW(1);
  }
else
  _M_realloc_insert(end(), __x);
  }

扩容实现见下文空间配置实现

pop_back()

void pop_back();

Removes the last element in the vector, effectively reducing the container size by one.

This destroys the removed element.

void
  pop_back() _GLIBCXX_NOEXCEPT
  {
__glibcxx_requires_nonempty();
--this->_M_impl._M_finish;
_Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
_GLIBCXX_ASAN_ANNOTATE_SHRINK(1);
  }

从最后删除一个元素,这并不会导致vector的总容量变化

size()

size_type size() const;

Returns the number of elements in the vector.

This is the number of actual objects held in the vector, which is not necessarily equal to its storage capacity.

size_type
  size() const _GLIBCXX_NOEXCEPT
  { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }

begin()

iterator begin(); const_iterator begin() const;

Returns an iterator pointing to the first element in the vector.

Notice that, unlike member vector::front, which returns a reference to the first element, this function returns a random access iterator pointing to it.

If the container is empty, the returned iterator value shall not be dereferenced.

iterator
  begin() _GLIBCXX_NOEXCEPT
  { return iterator(this->_M_impl._M_start); }


const_iterator
  begin() const _GLIBCXX_NOEXCEPT
  { return const_iterator(this->_M_impl._M_start); }

front()

reference front(); const_reference front() const;

Access first element
Returns a reference to the first element in the vector.

Unlike member vector::begin, which returns an iterator to this same element, this function returns a direct reference.

Calling this function on an empty container causes undefined behavior.

reference
  front() _GLIBCXX_NOEXCEPT
  {
__glibcxx_requires_nonempty();
return *begin();
  }

const_reference
  front() const _GLIBCXX_NOEXCEPT
  {
__glibcxx_requires_nonempty();
return *begin();
  }

front返回的是*begin(),是引用

back()

reference back(); const_reference back() const;

Returns a reference to the last element in the vector.

reference
  back() _GLIBCXX_NOEXCEPT
  {
__glibcxx_requires_nonempty();
return *(end() - 1);
  }

 const_reference
  back() const _GLIBCXX_NOEXCEPT
  {
__glibcxx_requires_nonempty();
return *(end() - 1);

back返回最后一个值,返回值是reference

end返回最后一个元素的下一个元素,是iterator

end()

iterator end(); const_iterator end() const;

Returns an iterator referring to the past-the-end element in the vector container.

iterator
  end() _GLIBCXX_NOEXCEPT
  { return iterator(this->_M_impl._M_finish); }

const_iterator
  end() const _GLIBCXX_NOEXCEPT
  { return const_iterator(this->_M_impl._M_finish); }

rbegin()

const_iterator cbegin() const noexcept;

Return const_iterator to beginning

reverse_iterator
  rbegin() _GLIBCXX_NOEXCEPT
  { return reverse_iterator(end()); }

const_reverse_iterator
  rbegin() const _GLIBCXX_NOEXCEPT
  { return const_reverse_iterator(end()); }

rend()

TODO


空间配置原则

vector内存布局.png

template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc>
{
    ...
}

template<typename _Tp, typename _Alloc>
struct _Vector_base
{

    struct _Vector_impl_data
      {
        pointer _M_start;                //表示目前使用空间的头
        pointer _M_finish;                //表示目前使用空间的尾
        pointer _M_end_of_storage;        //表示目前可用空间的尾
        ...
      }

}

input

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include <iostream>
#include <vector>
using namespace std;

int main()
{
std::vector<int> vec ;
vec.push_back(8);
vec.push_back(6);
vec.push_back(7);
vec.end();


}

/* stl_vector.h gcc 4.8.5 c++ 98
900 void
901 push_back(const value_type& __x)
902 {
903 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
904 {
905 _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
906 __x);
907 ++this->_M_impl._M_finish;
908 }
909 else
910 #if __cplusplus >= 201103L
911 _M_emplace_back_aux(__x);
912 #else
913 _M_insert_aux(end(), __x);
914 #endif
915 }

*/

output

Breakpoint 5, std::vector<int, std::allocator<int> >::push_back (this=0x7fffffffe220, __x=@0x7fffffffe244: 8) at /usr/include/c++/4.8.2/bits/stl_vector.h:915
915          }
(gdb) p (this->_M_impl._M_start)
$17 = (std::_Vector_base<int, std::allocator<int> >::pointer) 0x604010
(gdb) p (this->_M_impl._M_finish)
$18 = (std::_Vector_base<int, std::allocator<int> >::pointer) 0x604014
(gdb) p (this->_M_impl._M_end_of_storage)
$19 = (std::_Vector_base<int, std::allocator<int> >::pointer) 0x604014
(gdb) p (this->_M_impl._M_end_of_storage-this->_M_impl._M_start)
$20 = 1
(gdb) p *(this->_M_impl._M_start)
$21 = 8
(gdb) c
Continuing.

Breakpoint 4, std::vector<int, std::allocator<int> >::push_back (this=0x7fffffffe220, __x=@0x7fffffffe248: 6) at /usr/include/c++/4.8.2/bits/stl_vector.h:903
903        if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
(gdb) c
Continuing.

Breakpoint 5, std::vector<int, std::allocator<int> >::push_back (this=0x7fffffffe220, __x=@0x7fffffffe248: 6) at /usr/include/c++/4.8.2/bits/stl_vector.h:915
915          }
(gdb) p (this->_M_impl._M_start)
$22 = (std::_Vector_base<int, std::allocator<int> >::pointer) 0x604030
(gdb) p (this->_M_impl._M_finish)
$23 = (std::_Vector_base<int, std::allocator<int> >::pointer) 0x604038
(gdb) p (this->_M_impl._M_end_of_storage)
$24 = (std::_Vector_base<int, std::allocator<int> >::pointer) 0x604038
(gdb) p (this->_M_impl._M_end_of_storage-this->_M_impl._M_start)
$25 = 2
(gdb) p *(this->_M_impl._M_start)
$26 = 8
(gdb) p *(this->_M_impl._M_start+1)
$27 = 6
(gdb) p (this->_M_impl._M_start+1)
$28 = (int *) 0x604034
(gdb) c
Continuing.

Breakpoint 4, std::vector<int, std::allocator<int> >::push_back (this=0x7fffffffe220, __x=@0x7fffffffe24c: 7) at /usr/include/c++/4.8.2/bits/stl_vector.h:903
903        if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
(gdb) c
Continuing.

Breakpoint 5, std::vector<int, std::allocator<int> >::push_back (this=0x7fffffffe220, __x=@0x7fffffffe24c: 7) at /usr/include/c++/4.8.2/bits/stl_vector.h:915
915          }
(gdb) p (this->_M_impl._M_start)
$29 = (std::_Vector_base<int, std::allocator<int> >::pointer) 0x604010
(gdb) p (this->_M_impl._M_finish)
$30 = (std::_Vector_base<int, std::allocator<int> >::pointer) 0x60401c
(gdb) p (this->_M_impl._M_end_of_storage-this->_M_impl._M_start)
$31 = 4
(gdb) p (this->_M_impl._M_end_of_storage)
$32 = (std::_Vector_base<int, std::allocator<int> >::pointer) 0x604020
(gdb) p *(this->_M_impl._M_start+2)
$33 = 7
(gdb) p (this->_M_impl._M_start+2)
$34 = (int *) 0x604018
(gdb) q

空间配置实现

//*******************vector constructor
explicit
  vector(size_type __n, const value_type& __value = value_type(),
     const allocator_type& __a = allocator_type())
  : _Base(_S_check_init_len(__n, __a), __a)
  { _M_fill_initialize(__n, __value); }


  //*******************_M_fill_initialize
  // Called by the first initialize_dispatch above and by the
  // vector(n,value,a) constructor.
  void
  _M_fill_initialize(size_type __n, const value_type& __value)
  {
this->_M_impl._M_finish =
  std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
                _M_get_Tp_allocator());
  }

//*******************__uninitialized_fill_n_a
//__uninitialized_fill_n_a会根据第一参数的型别特性(type traits),
//决定使用算法 fill_n()或反复呼叫 construct() 来完成任务
template<typename _ForwardIterator, typename _Size, typename _Tp,
   typename _Allocator>
_ForwardIterator
__uninitialized_fill_n_a(_ForwardIterator __first, _Size __n, 
             const _Tp& __x, _Allocator& __alloc)
{
  _ForwardIterator __cur = __first;
  __try
{
  typedef __gnu_cxx::__alloc_traits<_Allocator> __traits;
  for (; __n > 0; --__n, (void) ++__cur)
    __traits::construct(__alloc, std::__addressof(*__cur), __x);
  return __cur;
}
  __catch(...)
{
  std::_Destroy(__first, __cur, __alloc);
  __throw_exception_again;
}
}

//__uninitialized_fill_n_a使用uninitialized_fill_n
template<typename _ForwardIterator, typename _Size, typename _Tp,
   typename _Tp2>
inline _ForwardIterator
__uninitialized_fill_n_a(_ForwardIterator __first, _Size __n, 
             const _Tp& __x, allocator<_Tp2>&)
{ return std::uninitialized_fill_n(__first, __n, __x); }

constructor 与 ++ –

ending

tumblr_pd1i8dNW3U1sfie3io1_1280.jpg

----------- ending -----------